0‘00 T d
(s*V)90 (JJQSJJJJ
o’ol o & o0 I * e o &
2 *e s 00 °o

(J_LU_Jg.OI LSLO)OJQ.) (SLOBJJDQJJ.» w409
<) Yocto Project & Open Embeddedcooooviiiiiiiiiiiiice 2

% Embedded Device Driver X86 Systems ... 6

Q) Embedded Device DIiVErocooiiiiiiiiiiiiic i 13

YoctoProject
& OpenEmbedded

Introduction to embedded Linux build systems

e Overview of an embedded Linux system architecture
e Methods to build a root filesystem image
e Usefulness of build systems

Overview of the Yocto Project and the Demo - First Yocto Project
build

e Organization of the project source tree

e Building a root filesystem image using the Yocto Project
e Downloading the Poky reference build system

e Building a system image

Using Yocto Project — basics

e Organization of the build output
e Flashing and installing the system image

Flashing and booting

e Flashing and booting the image on the board

Using Yocto Project - advanced usage Demo - Using NFS and
configuring the build

e Configuring the build system

e Customizing the package selection

e Configuring the board to boot over NFS

e Learn how to use the PREFERRED_PROVIDER mechanism

Writing recipes - basics Demo - Adding an application to the
build

e Writing a minimal recipe

e Adding dependencies

e Development workflow with bitbake
e Writing a recipe for nlnvaders

e Adding ninvaders to the final image

Writing recipes - advanced features

e Extending and overriding recipes
e Adding steps to the build process
e Learn about classes

e Analysis of examples

e Logging

e Debugging dependencies

Layers Demo - Writing a layer

e What layers are

e Where to find layers

e Creating a layer

e Learn how to write a layer

e Add the layer to the build

e Move ninvaders to the new layer

Writing a BSP Demo - Implementing the kernel changes

e Extending an existing BSP

e Adding a new machine Bootloaders

e Linux and the linux-yocto recipe

e Adding a custom image type

e Extend the kernel recipe to add the MPU6050 accelerometer/gyro driv-
er

e Configure the kernel to compile the MPU6050 accelerometer/gyro driv-
er

e Play ninvaders

Creating a custom image Demo - Creating a custom image

e Writing an image recipe

e Adding users/groups

e Adding custom configuration

e Writing and using package groups recipes
e Writing a custom image recipe

e Adding ninvaders to the custom image

Creating and using an SDK Demo - Experimenting with the SDK

e Understanding the purpose of an SDK for the application developer
e Building an SDK for the custom image

e Building an SDK

e Using the Yocto Project SDK

Questions and Answers

e (Questions and answers with the audience about the course topics
e Extra presentations if time is left, according what most participants are
interested in

Embedded Device Driver

X86 Systems

Make yourself into a Linux kernel specialist, who can

e Configure, compile, and install a Linux kernel

e Do the same for a kernel module

e Navigate and read the Linux kernel sources

e Use the API for internal kernel services

e Design and implement a kernel module

e Modify, or design and implement a device driver

e Measure the performance of your implementation

Introduction to the Linux kernel

e Kernel features

e Understanding the development process
e Legal constraints with device drivers

e Kernel user interface (/proc and /sys)

e User space device drivers

.

LA LI HLRISE

Kernel sources

e Specifics of Linux kernel development

e Coding standards

e Retrieving Linux kernel sources

e Tour of the Linux kernel sources

e Kernel source code browsers: cscope, Kscope, Elixir

e Making searches in the Linux kernel sources: looking for C definitions,
for definitions of kernel configuration parameters, and for other kinds of
information

e Using the UNIX command line and then kernel source code browsers

Kernel configuration, compiling and booting on NFS

e Kernel configuration and compilation

e Generated files

e Booting the kernel. Kernel booting parameters
* Mounting a root filesystem on NFS

e Using the gemu software

e Configuring, compiling and booting a Linux

e kernel with NFS boot support

Linux kernel modules writing modules in action

e Linux device drivers

e Asimple module

e Programming constraints

e Loading, unloading modules
e Module dependencies

e Kernel symbol table

e Cleanup function

Adding sources to the kernel tree

Write a kernel module with several capabilities
Access kernel internals from your module

Set up the environment to compile it

Data Types in the Kernel

e Standard C type
¢ Interface Specific Types
e Linked Lists

Linux device model

e Understand how the kernel is designed to support device drivers
e The device model

e Binding devices and drivers

¢ Platform devices, Device Tree

¢ Interface in user space: /sys

e Kobjects, Ksets, and Subsystems

* Low-Level Sysfs Operations

e Hotplug Event Generation

e Buses, Devices, and Drivers

e Classes

e Dealing with Firmware

e Kernel frameworks

e Block vs. Character devices

e Useful data structures

¢ File and inode Structure

e Char Device registration

* Interaction of user space applications with the kernel

* Details on character devices, file_operations, ioctl(), etc

e Read and write
e Exchanging data to/from user space
* The principle of kernel frameworks

Advanced Char Driver Operations

Device Control

Blocking 1/0

Sleeping

Asynchronous Notification
Access Control on a device file

Memory management I/O memory and ports

e Linux: memory management - Physical and
e Virtual (kernel and user) address space

e Linux memory management implementation
e Allocating with kmalloc()

e Allocating by pages

¢ Allocating with vmalloc()

® Caches

e Memory Pools

e Buffers

¢ |/0 register and memory range registration
 |/0O register and memory access

e Read / write memory barriers

10

The misc kernel subsystem

e What the misc kernel subsystem is useful for.
e API of the misc kernel subsystem, both the kernel side and user space
side

Time, Delays, Processes, scheduling, sleeping and interrupts
sleeping and handling interrupts in a device driver in a real ex-
ample

e Time measurement

e Process management in the Linux kernel

e Process Specific registers

e The Linux kernel scheduler and how processes sleep

e |nterrupt handling in device drivers

e Interrupt handler registration and programming, scheduling deferred
work.

e |[RQ Number

e Interrupt Sharing

¢ Interrupt Driven I/O

e Kernel Timers

e Delaying Execution

e Tasklets

e Workqueues

e Adding read capability to the character driver developed earlier
e Register an interrupt handler

e Waiting for data to be available in the read() file operation

e Waking up the code when data is available from the device

11

Concurrency and Race Conditions Locking in action

Issues with concurrent access to shared resources

Locking primitives: mutexes, semaphores, spinlocks

Atomic operations

Typical locking issues

Using the lock validator to identify the sources of locking problems
Observe problems due to concurrent accesses to the device

Add locking to the driver to fix these issues

USB Drivers

USB Device Basics

Writing a USB Driver

probe and disconnect

USB Transfers Without Urbs

Driver debugging techniques investigating kernel faults in action

Debugging with printk

Using Debugfs

Analyzing a kernel oops

Using kgdb, a kernel debugger

Using the Magic SysRg commands

Studying a broken driver

Analyzing a kernel fault message and locating the problem in the

source code

12

The Linux kernel development process

e Organization of the kernel community

e The release schedule and process: release candidates, stable releases,
long-term support, etc

e Legal aspects, licensing

e How to submit patches to contribute code to the community

13

Embedded
Device Drivers

Introduction to the Linux kernel:

e Kernel features

e Understanding the development process
e Legal constraints with device drivers

e Kernel user interface (/proc and /sys)

e Userspace device drivers

Kernel sources:

Specifics of Linux kernel development

Coding standards

Retrieving Linux kernel sources

Tour of the Linux kernel sources

Kernel source code browsers: cscope, Linux Cross Reference (LXR)

B

FLAM LINUX HOUSE

Kernel source code:

e Making searches in the Linux kernel sources: looking for C definitions,
for definitions of kernel configuration parameters, and for other kinds of
information.

¢ Using the Unix command line and then kernel source code browsers

Configuring, compiling and booting the Linux kernel:

Kernel configuration

Native compiling. Generated files.
Booting the kernel

Kernel booting parameters

NFS booting and cross-compiling:

e Booting on a directory on your GNU/Linux workstation, through NFS
e Kernel cross-compiling

Kernel configuration, cross-compiling and booting on NFS

e Using the ARM board
e Configuring, cross-compiling and booting a Linux kernel with NFS boot
support

14

15

Linux kernel modules:

e Linux device drivers

e Asimple module

e Programming constraints

e Loading, unloading modules

e Module parameters

e Module dependencies

e Adding sources to the kernel tree

e Generating patches to share them with others

Writing modules:

e Write a kernel module with several capabilities, including module pa-
rameters.

e Access kernel internals from your module

e Setup the environment to compile it

Memory management:

e Linux: memory management - Physical and virtual (kernel and user)
address spaces

e Linux memory management implementation

Allocating with kmalloc()

Allocating by pages

Allocating with vmalloc()

I/0 memory and ports:

¢ |/O register and memory range registration

¢ |/0O register and memory access

e Read / write memory barriers

e Make a remote connection to your board through ssh

e Access the system console through the network

e Reserve the I/O memory addresses used by the serial port

e Read device registers and write data to them, to send characters on
the serial port

Character drivers:

e Device numbers

e Getting free device numbers

* Implementing file operations: read, write, open, close, ioctl...

e Exchanging data between kernel-space and user-space

e Character driver registration

e Using the ARM board

e Writing a simple character driver, to write data to the serial port
e On your workstation, checking that transmitted data is received cor-
rectly

e Exchanging data between userspace and kernel space

e Practicing with the character device driver API

e Using kernel standard error codes

Processes, scheduling, sleeping and interrupts:

e Process management in the Linux kernel
e The Linux kernel scheduler and how processes sleep

16

* Interrupt handling in device drivers: interrupt handler registration and
programming

e Scheduling deferred work

Adding read capability to the character driver developed earlier
Register an interrupt handler

Waiting for data to be available in the read file operation

Waking up the code when data is available from the device

Driver debugging techniques:

e Debugging with printk

e proc and debugfs entries

e Analyzing a kernel oops

e Using kgdb, a kernel debugger

e Using the Magic SysRg commands
e Debugging through a JTAG probe
e SystemTap and demonstration

Investigating kernel faults:

e Using the ARM board
e Studying a broken driver
e Analyzing a kernel fault and locating the problem in the source code

Kernel boot-up details:

e Detailed description of the kernel boot-up process, from execution by
the bootloader to the execution of the first userspace program
e Initcalls: how to register your own initialization routines

17

18

Working with the community:

e How to get help from the community
e Report bugs

e Generate and send patches

e Useful resources about the kernel

Managing kernel sources with git:

¢ Very useful to manage your changes to the Linux kernel (drivers, board
support code), staying in sync with mainstream updates

e Cloning an existing git tree

e Creating your own branch with your own changes

e Generating patches against the reference tree

e Review of useful git commands

e Understanding the work flow used by kernel developers, through the
study of typical scenarios

e Create your own git branch from the mainline tree

e Get changes from trees and generate your own patch-set

e Keep your branch updated with the changes in your reference tree

