
1

سرفصل آموزشی

پک پیشرفته متخصص اینترنت اشیا

Yocto Project & Open Embedded

Embedded Device Driver X86 Systems

Embedded Device Driver

2

6

13

..

..

فهرست سرفصل های دوره های آموزشی

...

2

سرفصل های دوره آموزشی

YoctoProject
& OpenEmbedded
Introduction to embedded Linux build systems

• Overview of an embedded Linux system architecture
• Methods to build a root filesystem image
• Usefulness of build systems

Overview of the Yocto Project and the Demo - First Yocto Project
build

• Organization of the project source tree
• Building a root filesystem image using the Yocto Project
• Downloading the Poky reference build system
• Building a system image

Using Yocto Project – basics

• Organization of the build output
• Flashing and installing the system image

3

Flashing and booting

• Flashing and booting the image on the board

Using Yocto Project - advanced usage Demo - Using NFS and
configuring the build

• Configuring the build system
• Customizing the package selection
• Configuring the board to boot over NFS
• Learn how to use the PREFERRED_PROVIDER mechanism

Writing recipes - basics Demo - Adding an application to the
build

• Writing a minimal recipe
• Adding dependencies
• Development workflow with bitbake
• Writing a recipe for nInvaders
• Adding nInvaders to the final image

Writing recipes - advanced features

• Extending and overriding recipes
• Adding steps to the build process
• Learn about classes
• Analysis of examples
• Logging
• Debugging dependencies

4

Layers Demo - Writing a layer

• What layers are
• Where to find layers
• Creating a layer
• Learn how to write a layer
• Add the layer to the build
• Move nInvaders to the new layer

Writing a BSP Demo - Implementing the kernel changes

• Extending an existing BSP
• Adding a new machine Bootloaders
• Linux and the linux-yocto recipe
• Adding a custom image type
• Extend the kernel recipe to add the MPU6050 accelerometer/gyro driv-

er
• Configure the kernel to compile the MPU6050 accelerometer/gyro driv-

er
• Play nInvaders

Creating a custom image Demo - Creating a custom image

• Writing an image recipe
• Adding users/groups
• Adding custom configuration
• Writing and using package groups recipes
• Writing a custom image recipe
• Adding nInvaders to the custom image

5

Creating and using an SDK Demo - Experimenting with the SDK

• Understanding the purpose of an SDK for the application developer
• Building an SDK for the custom image
• Building an SDK
• Using the Yocto Project SDK

Questions and Answers

• Questions and answers with the audience about the course topics
• Extra presentations if time is left, according what most participants are

interested in

6

سرفصل های دوره آموزشی

Embedded Device Driver

X86 Systems
Make yourself into a Linux kernel specialist, who can

• Configure, compile, and install a Linux kernel
• Do the same for a kernel module
• Navigate and read the Linux kernel sources
• Use the API for internal kernel services
• Design and implement a kernel module
• Modify, or design and implement a device driver
• Measure the performance of your implementation

Introduction to the Linux kernel

• Kernel features
• Understanding the development process
• Legal constraints with device drivers
• Kernel user interface (/proc and /sys)
• User space device drivers

7

Kernel sources

• Specifics of Linux kernel development
• Coding standards
• Retrieving Linux kernel sources
• Tour of the Linux kernel sources
• Kernel source code browsers: cscope, Kscope, Elixir
• Making searches in the Linux kernel sources: looking for C definitions,
for definitions of kernel configuration parameters, and for other kinds of
information
• Using the UNIX command line and then kernel source code browsers

Kernel configuration, compiling and booting on NFS

• Kernel configuration and compilation
• Generated files
• Booting the kernel. Kernel booting parameters
• Mounting a root filesystem on NFS
• Using the qemu software
• Configuring, compiling and booting a Linux
• kernel with NFS boot support

Linux kernel modules writing modules in action

• Linux device drivers
• A simple module
• Programming constraints
• Loading, unloading modules
• Module dependencies
• Kernel symbol table
• Cleanup function

8

• Adding sources to the kernel tree
• Write a kernel module with several capabilities
• Access kernel internals from your module
• Set up the environment to compile it

Data Types in the Kernel

• Standard C type
• Interface Specific Types
• Linked Lists

Linux device model

• Understand how the kernel is designed to support device drivers
• The device model
• Binding devices and drivers
• Platform devices, Device Tree
• Interface in user space: /sys
• Kobjects, Ksets, and Subsystems
• Low-Level Sysfs Operations
• Hotplug Event Generation
• Buses, Devices, and Drivers
• Classes
• Dealing with Firmware
• Kernel frameworks
• Block vs. Character devices
• Useful data structures
• File and inode Structure
• Char Device registration
• Interaction of user space applications with the kernel
• Details on character devices, file_operations, ioctl(), etc

9

• Read and write
• Exchanging data to/from user space
• The principle of kernel frameworks

Advanced Char Driver Operations

• Device Control
• Blocking I/O
• Sleeping
• Asynchronous Notification
• Access Control on a device file

Memory management I/O memory and ports

• Linux: memory management - Physical and
• Virtual (kernel and user) address space
• Linux memory management implementation
• Allocating with kmalloc()
• Allocating by pages
• Allocating with vmalloc()
• Caches
• Memory Pools
• Buffers
• I/O register and memory range registration
• I/O register and memory access
• Read / write memory barriers

10

The misc kernel subsystem

• What the misc kernel subsystem is useful for.
• API of the misc kernel subsystem, both the kernel side and user space
side

Time, Delays, Processes, scheduling, sleeping and interrupts
sleeping and handling interrupts in a device driver in a real ex-
ample

• Time measurement
• Process management in the Linux kernel
• Process Specific registers
• The Linux kernel scheduler and how processes sleep
• Interrupt handling in device drivers
• Interrupt handler registration and programming, scheduling deferred
work.
• IRQ Number
• Interrupt Sharing
• Interrupt Driven I/O
• Kernel Timers
• Delaying Execution
• Tasklets
• Workqueues
• Adding read capability to the character driver developed earlier
• Register an interrupt handler
• Waiting for data to be available in the read() file operation
• Waking up the code when data is available from the device

11

Concurrency and Race Conditions Locking in action

• Issues with concurrent access to shared resources
• Locking primitives: mutexes, semaphores, spinlocks
• Atomic operations
• Typical locking issues
• Using the lock validator to identify the sources of locking problems
• Observe problems due to concurrent accesses to the device
• Add locking to the driver to fix these issues

USB Drivers

• USB Device Basics
• Writing a USB Driver
• probe and disconnect
• USB Transfers Without Urbs

Driver debugging techniques investigating kernel faults in action

• Debugging with printk
• Using Debugfs
• Analyzing a kernel oops
• Using kgdb, a kernel debugger
• Using the Magic SysRq commands
• Studying a broken driver
• Analyzing a kernel fault message and locating the problem in the
source code

12

The Linux kernel development process

• Organization of the kernel community
• The release schedule and process: release candidates, stable releases,
long-term support, etc
• Legal aspects, licensing
• How to submit patches to contribute code to the community

13

سرفصل های دوره آموزشی

Embedded
Device Drivers
Introduction to the Linux kernel:

• Kernel features
• Understanding the development process
• Legal constraints with device drivers
• Kernel user interface (/proc and /sys)
• Userspace device drivers

Kernel sources:

• Specifics of Linux kernel development
• Coding standards
• Retrieving Linux kernel sources
• Tour of the Linux kernel sources
• Kernel source code browsers: cscope, Linux Cross Reference (LXR)

14

 Kernel source code:

• Making searches in the Linux kernel sources: looking for C definitions,
for definitions of kernel configuration parameters, and for other kinds of
information.
• Using the Unix command line and then kernel source code browsers

Configuring, compiling and booting the Linux kernel:

• Kernel configuration
• Native compiling. Generated files.
• Booting the kernel
• Kernel booting parameters

NFS booting and cross-compiling:

• Booting on a directory on your GNU/Linux workstation, through NFS
• Kernel cross-compiling

Kernel configuration, cross-compiling and booting on NFS

• Using the ARM board
• Configuring, cross-compiling and booting a Linux kernel with NFS boot
support

15

 Linux kernel modules:

• Linux device drivers
• A simple module
• Programming constraints
• Loading, unloading modules
• Module parameters
• Module dependencies
• Adding sources to the kernel tree
• Generating patches to share them with others

Writing modules:

• Write a kernel module with several capabilities, including module pa-
rameters.
• Access kernel internals from your module
• Setup the environment to compile it

 Memory management:

• Linux: memory management - Physical and virtual (kernel and user)
address spaces
• Linux memory management implementation
• Allocating with kmalloc()
• Allocating by pages
• Allocating with vmalloc()

16

I/O memory and ports:

• I/O register and memory range registration
• I/O register and memory access
• Read / write memory barriers
• Make a remote connection to your board through ssh
• Access the system console through the network
• Reserve the I/O memory addresses used by the serial port
• Read device registers and write data to them, to send characters on
the serial port

Character drivers:

• Device numbers
• Getting free device numbers
• Implementing file operations: read, write, open, close, ioctl...
• Exchanging data between kernel-space and user-space
• Character driver registration
• Using the ARM board
• Writing a simple character driver, to write data to the serial port
• On your workstation, checking that transmitted data is received cor-
rectly
• Exchanging data between userspace and kernel space
• Practicing with the character device driver API
• Using kernel standard error codes

 Processes, scheduling, sleeping and interrupts:

• Process management in the Linux kernel
• The Linux kernel scheduler and how processes sleep

17

• Interrupt handling in device drivers: interrupt handler registration and
programming
• Scheduling deferred work
• Adding read capability to the character driver developed earlier
• Register an interrupt handler
• Waiting for data to be available in the read file operation
• Waking up the code when data is available from the device

Driver debugging techniques:

• Debugging with printk
• proc and debugfs entries
• Analyzing a kernel oops
• Using kgdb, a kernel debugger
• Using the Magic SysRq commands
• Debugging through a JTAG probe
• SystemTap and demonstration

 Investigating kernel faults:

• Using the ARM board
• Studying a broken driver
• Analyzing a kernel fault and locating the problem in the source code

Kernel boot-up details:

• Detailed description of the kernel boot-up process, from execution by
the bootloader to the execution of the first userspace program
• Initcalls: how to register your own initialization routines

18

Working with the community:

• How to get help from the community
• Report bugs
• Generate and send patches
• Useful resources about the kernel

Managing kernel sources with git:

• Very useful to manage your changes to the Linux kernel (drivers, board
support code), staying in sync with mainstream updates
• Cloning an existing git tree
• Creating your own branch with your own changes
• Generating patches against the reference tree
• Review of useful git commands
• Understanding the work flow used by kernel developers, through the
study of typical scenarios
• Create your own git branch from the mainline tree
• Get changes from trees and generate your own patch-set
• Keep your branch updated with the changes in your reference tree

